手机浏览器扫描二维码访问
“从零开始,没有任何可以借鉴的资料,而且时限……只有两个月!”
菲涅尔教授继续说道,“我不会说什么加油激励的话,只希望你们两个不要忘记来这的目的,想要退出,我随时欢迎。”
“多余的话说道这里,现在我们来谈谈课题的事情。”
菲涅尔教授让两人找位置坐下,搬过来一台笔记本电脑,打开一份ppt,指着道,“这是我做的一个简短的课题研究流程。”
“这个项目,我做主导,你们两个的任务就是辅助我,解决一些难度不算大的环节。”
程诺和赫尔点点头,表示知道。
以他们两个的能力,还不足以撑起这个项目的框架。
菲涅尔教授继续做着讲解,“这个项目的拟定名称,叫做黎曼流形上fritzjohn必要最优性条件。那就首先要明白,何谓黎曼流形,何谓fritzjohn必要最优性条件!”
“黎曼流形这个概念不用说,而fritzjohn必要最优性条件对你们来说应该比较陌生。”他先把目光望向程诺,“程诺,你了解这个概念吗?”
程诺不假思索的回答,“所谓的fritzjohn必要最优性条件,便是指f(x),st{g(x)≤0,h(x)=0,x∈的必要最优性条件。”
“不错,这就是fritzjohn必要最优性条件。你们也看出来了,这个fritzjohn必要最优性条件如果直接去研究的话,不仅变量极多,函数方程不好定义之外,还存在推导过程中公式复杂的问题。”
“也因此,我们需要转换一下思路。”
菲涅尔教授翻到下一页ppt,上面只写着一行公式:
f:→r,g:→rl,h:→rn
程诺扫了一眼,恍然大悟一声,“lipschitz函数?!”
菲涅尔教授瞥了一眼程诺,目光带着一丝赞赏,“准确的说,是局部lipschitz函数!”
lipschitz函数,是指若f(x)在区间i上满足对定义域d的任意两个不同的实数x1、x2均有:∥f(x1)-f(x2)∥≈ap;lt;=k∥x1-x2∥成立,必定有f(x)在区间i上一致连续
程诺心中,已经大概明白了这个项目菲涅尔教授的破题点是什么了。
菲涅尔教授继续他的理论讲解,“在这个公式中,我们可以把当做一个维的黎曼流形。”
“艾顿可的那篇关于hilbert空间中p问题的论文,你们两个都应该有读到过吧?”
两人同时点头。
“那就好了,类比一下,我们就可以把p问题从线性的空间扩展到微分流形上,而微分流形又是非光滑的,那么我们就可以有如下的框架构建。”
下一张ppt展示在两人面前。
“第一步,在黎曼流形上建立非光滑分析工具,即在流形上定义广义方向导数和广义梯度。”
“第二步,讨论广义梯度的性质。”
“第三步,在前两步的基础上,讨论黎曼流形上问题(p)的fritzjohn型最优性条件.”
“第四步,……”
框架早已被菲涅尔教授搭建好。
而程诺在看到那一条条井然有序的过程步骤,有一种醍醐灌顶的感觉。
原来,这个项目,应该这样去做!
位面系统之崛起 长风不南归 四合院:开局迎娶于莉 影视世界,已成赢家 综漫:为了养活妹妹,去打工吧! 港片:我是幕后大枭雄 拥有时空门的修仙家族 怪兽电影大冒险 视频通动漫,剪辑十大装逼人物 修仙从古墓开始 禁地求生,开局获得钟离模板! 末世:开局获得篇章系统 重生麻雀,目标:三足金乌 网游之大盗贼 开局我穿越成了大明星 洪荒二郎传 漫威世界的御主 我的师长冯天魁 李云龙,看,这是什么 圣心双雄
有空间,固定CP,存货就是用来用的,不来用,囤货就没意义了。先写一个我认为小阶层的囤货。再写一些我自己喜欢的文段,知青世界已完结。...
狂仙长生亿万年简介emspemsp狂仙长生亿万年是微光晨曦的经典玄幻魔法类作品,狂仙长生亿万年主要讲述了少年江易重生蛮荒东域,觉醒无极神通。自此破茧成蝶,由凡入仙,微光晨曦最新鼎力大作,年度必看玄幻魔法。耽美文(danmei...
一觉醒来,1820岁年轻人,被神秘力量传送到未知星球。种种危机逼迫着人类不断前进,只有到达终点,才能离开危机四伏的世界。这里凶兽遍地,有会飞的鲸鱼,山岳般的巨人,神奇的能力,翱翔的巨龙,房屋大小的蚂蚁,吞噬岛屿的海中巨物,等等数不尽的奇特地域和生灵。开局每人一台永动机,如何利用自己决定。多方神秘势力在背后推动,世间生灵皆为棋子,棋局博弈,攻守转换。秦风身为棋子却利用智慧和探测雷达在棋盘上搅动风云,建势力,摆暗子,怒砸棋盘。我命由我不由天,天欲灭我我灭天!如果您喜欢移动求生从每人一台永动机开始,别忘记分享给朋友...
都市杀手之王简介emspemsp关于都市杀手之王承受着复仇之火的封安,将成为这个国家,乃至世界的保镖之王。首发po18vipxyzωoо1⒏υip...
快穿邪性BOSS,坏透了!简介emspemsp关于快穿邪性BOSS,坏透了!你想逃到哪里去清冷男人看着逃跑的女人,温柔的嗓音响起。我们的位置颠倒了腹黑男人怒视身上的女人,咬牙切齿道。我们已经有了‘夫妻’之实女装大佬嘴角弯起了邪气的弧度。你肚子里已有了我的种邪魅男人盯着某女肚子,露出了狐狸般的笑容。宓攸宁大夏皇朝的九公主意外死亡,成为任务者尽职完成任务。然而每个世界都会遇到那么一个男人,他们亦正亦邪,坏的透彻,但男人却一成不变的护她,...
无尽超维入侵简介emspemsp关于无尽超维入侵神秘人域外归来,开启的晶壁隧道,导致异域空间与地球空间产生重合,无数异域生物通过重合点涌入地球。不同维度空间的本源能量产生冲突,本土生物受到侵染产生异变,外来物种入侵严重影响地...